<span id="jwrww"></span>

<th id="jwrww"><track id="jwrww"></track></th>

<rp id="jwrww"></rp>

    氨氮廢水處理方法綜述(下)

    2022-11-07  來自: 環保水圈 瀏覽次數:4

    導讀


    氨氮廢水形成一般是由于氨水和無機氨共同存在所造成的,廢水氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨,氯化銨等等。


    氨氮廢水


    氨氮廢水主要來自化工、冶金、化肥、煤氣、煉焦、鞣革、味精、肉類加工和養殖等行業。排放的廢水以及垃圾滲濾液等。氨氮廢水對魚類及某些生物也有毒害作用。

    另外,當含少量氨氮的廢水回用于工業中時,對某些金屬,特別是銅具有腐蝕作用,還可以促進輸水管道和用水設備中微生物的繁殖,形成生物垢,堵塞管道和設備。

    處理氨氮廢水的方法有很多,目前常見的有化學沉淀法、吹脫法、化學氧化法、生物法、膜分離法、離子交換法以及土壤灌溉等。

    本文對氨氮廢水處理方法作一綜述并對各種方法的優缺點進行分析匯總。


    四、生物法

    1、傳統生物脫氮技術

    傳統生物法是在各種微生物作用下,經過硝化、反硝化等一系列反應將廢水中的氨氮轉化為氮氣,從而達到廢水治理的目的。傳統生物法去除氨氮需要經過兩個階段,第 一階段為硝化過程,在有氧條件下硝化菌將氨轉化為亞硝酸鹽和硝酸鹽;第 二階段為反硝化過程,在無氧或低氧條件下,反硝化菌將污水中的硝酸鹽和亞硝酸鹽轉化為氮氣。傳統生物法去除氨氮的機理如下:

    工程應用中主要有A/0、A~2/O,UCT,氧化溝以及SBR工藝等,是生物脫氮工業中應用較為成熟的方法。影響生物脫氮技術的因素主要有:PH值、溫度、溶解氧、有機碳源等。沈連峰等人采用物化一水解酸化一A/0(厭氧/好氧)組合法處理焦化廢水,工程實踐表明,該工藝運行穩定且處理效果好,出水水質達到GB8978-1996規定中的二級標準。

    某公司污水處理廠采用A/0法處理綜合廢水,氨氮去除率達到百分之六十八。

    對二級缺氧一好氧生物脫氮技術在味精行業廢水處理中的應用進行檢測,結果表明,處理效果持續穩定,氨氮的去除率可達到百分之九十四以上,實現了味精廢水氨氮達標排放要求。

    統生物法處理氨氮廢水具有效果穩定、操作簡單、不產生二次污染、成本較低等優點。該法也存在一些弊端,如當廢水中C/N比值較低時補充碳源,對溫度要求相對嚴格,低溫時效率低,占地面積大,需氧量大,有些有害物質如重金屬離子等對微生物有壓制作用,需在進行生物法之前去除,此外,廢水中,氨氮濃度過高對硝化過程也產生控制作用,所以在處理高濃度氨氮廢水前應進行預處理,使氨氮廢水濃度小于300mg/L。傳統生物法適用于處理含有有機物的低濃度氨氮廢水,如生活污水、化工廢水等。

    2、新型生物脫氮技術

    1)同時硝化反硝化(SND

    當硝化與反硝化在同一個反應器中同事進行時,稱為同時消化反硝化(SND)。廢水中的溶解氧受擴散速度限制在微生物絮體或者生物膜上的微環境區域產生溶解氧梯度,使微生物絮體或生物膜的外表面溶解氧梯度,利于好氧硝化菌和氨化菌的生長繁殖,越深入絮體或膜內部,溶解氧濃度越低,產生缺氧區,反硝化菌占優勢,從而形成同時消化反硝化過程。影響同時消化反硝化的因素有PH值、溫度、堿度、有機碳源、溶解氧及污泥齡等。

    Carrousel氧化溝中有同時硝化/反硝化現象存在,在Carrousel氧化溝曝氣葉輪之間的溶解氧濃度是逐漸降低的,且Carrousel氧化溝下層溶解氧低于上層。在溝道的各部分硝態氮的形成和消耗速度幾乎相等,溝道中氨氮始終保持很低的濃度,這就表明硝化及反硝化反應在Carrousel氧化溝中同時發生。

    研究生活污水的處理,認為CODCr越高,反硝化越完全,TN去除效果越好。溶解氧對同時硝化反硝化的影響較大,溶解氧控制在0.5~2mg/L時,總氮去除效果好。

    同時硝化反硝化法節省反應器,縮短反應時間,能耗低,投資省,易保持pH值穩定。

    2)短程消化反硝化

    短程硝化反硝化是在同一個反應器中,先在有氧的條件下,利用氨氧化細菌將氨氧化成亞硝酸鹽,然后在缺氧的條件下,以有機物或外加碳源作電子供體,將亞硝酸鹽直接進行反硝化生成氮氣。短程硝化反硝化的影響因素有溫度、游離氨、pH值、溶解氧等。

    溫度對不含海水的城市生活污水和含三成海水的城市生活污水短程硝化的影響。試驗結果表明:對于不含海水的城市生活污水,提高溫度有利于實現短程硝化,生活污水中海水比例為十分之三時中溫條件下可以較好地實現短程硝化。Delft工業大學開發了SHARON工藝,利用高溫(大約30-4090)有利于亞硝酸菌增殖的特點,使硝酸菌失去競爭,同時通過控制污泥齡淘汰硝酸菌,使硝化反應處于亞硝化階段。

    根據亞硝酸菌與硝酸菌對氧親和力的不同,Gent微生物生態實驗室開發出OLAND工藝,通過控制溶解氧淘汰硝酸菌,來實現亞硝酸氮的積累。

    采用短程硝化反硝化處理焦化廢水的中試結果表明,進水COD,氨氮,TN和酚的濃度分別為1201.6,510.4,540.1110.4mg/L時,出水COD,氨氮,TN和酚的平均濃度分別為197.1,14.2,181.50.4mg/L。

    短程硝化反硝化過程不經歷硝酸鹽階段,節約生物脫氮所需碳源。對于低C/N比的氨氮廢水具有一定的優勢。短程硝化反硝化具有污泥量少,反應時間短,節約反應器體積等優點。但短程硝化反硝化要求穩定的亞硝酸鹽積累,因此如何有效控制硝化菌的活性成為關鍵。

    3)厭氧氨氧化

    厭氧氨氧化是在缺氧條件下,以亞硝態氮或硝態氮為電子受體,利用自養菌將氨氮直接氧化為氮氣的過程。

    研究溫度和PH值對厭氧氨氧化生物活性的影響,結果表明,該微生物的反應溫度為30,pH值為7.8。

    研究厭氧氨氧化反應器處理高鹽度、高濃度含氮廢水的可行性。結果表明,高鹽度顯著控制厭氧氨氧化活性,這種控制具有可逆性。在30g.L-1(NaC1)鹽度條件下,未馴化污泥的厭氧氨氧化活性比對照(無鹽水質條件);馴化污泥的厭氧氨氧化活性比對照低。由高鹽度環境轉移到低鹽度環境〔無鹽水)時,馴化污泥的厭氧氨氧化活性可有效提高。但反應器長期運行于高鹽度條件下,容易出現功能衰退。

    與傳統生物法相比,厭氧氨氧化無需外加碳源,需氧量低,無需試劑進行中和,污泥產量少,是較經濟的生物脫氮技術。厭氧氨氧化的缺點是反應速度較慢,所需反應器容積較大,且碳源對厭氧氨氧化不利,對于解決可生化性差的氨氮廢水具有現實意義。

    五、膜分離法

    膜分離法是利用膜的選擇透過性對液體中的成分進行選擇性分離,從而達到氨氮脫除的目的。包括反滲透、納濾和電滲析等。影響膜分離法的因素有膜特性、壓力或電壓、pH值、溫度以及氨氮濃度等。

    根據稀土冶煉廠排放氨氮廢水的水質情況,采用NH4C1NaCI模擬廢水進行了反滲透對比實驗,發現在相同條件下反滲透對NaCI有較高去除率,而NHCl有較高的產水速率。氨氮廢水經反滲透處理后NH4C1去除率為百分之七十七,可作為氨氮廢水的預處理。反滲透技術可以節約能源,熱穩定性較好,但耐氯性、抗污染性差。

    采用生化一納濾膜分離工藝處理垃圾滲瀝液,使九成透過液達標排放,僅百分之十五的濃縮污液和泥漿返回垃圾池。Ozturki等人對土耳其Odayeri垃圾滲濾液經納濾膜處理,氨氮去除率約為百分之七十二。納濾膜要求的壓力比反滲透膜低,操作方便。

    電滲析法是利用施加在陰陽膜對之間的電壓去除水溶液中溶解的固體。氨氮廢水中的氨離子及其它離子在電壓的作用下,通過膜在含氨的濃水中富集,從而達到去除的目的。

    采用電滲析法處理高濃度氨氮無機廢水取得較好效果。對濃度為2000--3000mg/L氨氮廢水,氨氮去除率可在百分之八十五以上,同時可獲得百分之九的濃氨水。電滲析法運行過程中消耗的電量與廢水中氨氮的量成正比。電滲析法處理廢水不受pH值、溫度、壓力限制,操作簡便。

    膜分離法的優點是氨氮回收率高,操作簡便,處理效果穩定,無二次污染等。但在處理高濃度氨氮廢水時,所使用的薄膜易結垢堵塞,再生、反洗頻繁,增加處理成本,故該法較適用于經過預處理的或中低濃度的氨氮廢水。

    生物膜(MBR)是將生物處理與膜分離有機結合的一種污水處理技術。

    研究以生物膜為核心的厭氧/兼氧/好氧組合工藝,在穩定運行階段總水力停留時間平均為84h,硝化池出水氨氮平均為lmg/L,去除率為百分之九十九點五,達到了排人管網的標準。生物膜法具有脫氮效率高,占地面積小,污泥量少,出水可直接循環使用等生物處理與膜分離的共同優點。運用生物膜法要注意保持膜有較大的通量和防止膜的滲漏。

    六、離子交換法

    離子交換法是通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脫石及交換樹脂等。沸石是一種三維空間結構的硅鋁酸鹽,有規則的孔道結構和空穴,其中斜發沸石對氨離子有強的選擇吸附能力,且價格低,因此工程上常用斜發沸石作為氨氮廢水的吸附材料。影響斜發沸石處理效果的因素有粒徑、進水氨氮濃度、接觸時間、pH值等。

    沸石對氨氮的吸附效果明顯,蛙石次之,土壤與陶粒效果較差。沸石去除氨氮的途徑以離子交換作用為主,物理吸附作用很小,陶粒、土壤和蛙石3填料的離子交換作用和物理吸附作用的效果相當。4種填料的吸附量在溫度為15-35℃內均隨溫度的升高而減小,在pH值為3-9范圍內隨pH值升高而加大,振蕩6h均達到吸附平衡。

    研究沸石吸附法去除垃圾滲濾液中氨氮可行性。小試研究結果表明,每克沸石具有吸附15.5mg氨氮的潛力,當沸石粒徑為30-16目時,在吸附時間、投加量及沸石粒徑相同的情況下,進水氨氮濃度越大,吸附速率越大,沸石作為吸附劑去除滲濾液中的氨氮是可行的。同時指出沸石對氨氮的吸附速度較低,在實際運行中沸石一般很難達到飽和吸附量。

    研究生物沸石床對模擬村鎮生活污水中各形態氮及COD污染物的去除效果。結果表明,生物沸石床對氨氮去除效果明顯且穩定,去除率大于百分之九十五,對硝態氮的去除則受水力停留時間的影響較大。

    離子交換法具有投資小、工藝簡單、操作方便、對毒物和溫度不敏感、沸石經再生可重復利用等優點。但處理高濃度氨氮廢水時,再生頻繁,給操作帶來不便,因此,需要與其他治理氨氮的方法聯合應用,或者用于治理低濃度氨氮廢水。

    七、土壤灌溉

    土壤灌溉是將低濃度氨氮廢水直接作為肥料使用的方法。對于有些含有病菌、重金屬、有機及無機等有害物質的氨氮廢水需經預處理將其去除后再進行灌溉。土壤灌溉要求氨氮濃度一般為幾十毫克每升。相關閱讀《染料廢水處理技術進展》。


    結束語

    氨氮廢水的處理方法有多種,由于廢水性質上的差異,各有優勢與不足,要針對不同性質的廢水,對其成分進行分析,然后選擇一種或幾種方法聯合的方式進行處理,才能達到理想的處理效果。

    關鍵詞: 氨氮廢水   綜述   衡美   水處理  

    衡水市衡美水處理設備有限公司,專營 原水處理設備 過濾器 全自動加藥裝置 等業務,有意向的客戶請咨詢我們,聯系電話:0318-2987119

    CopyRight ? 版權所有: 衡水市衡美水處理設備有限公司 技術支持:衡水航宇 網站地圖 XML

    本站關鍵字: 反滲透設備


    掃一掃訪問移動端
    狠狠操狠狠爱

    <span id="jwrww"></span>

    <th id="jwrww"><track id="jwrww"></track></th>

    <rp id="jwrww"></rp>